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Abstract

This document provides formal definitions, propositions, and proofs for the claims made in
the mechanism design audit of Crosslink Zebra. We formalize the model of hybrid PoW /PoS
consensus with frozen validator sets and no slashing, characterize equilibrium conditions for
finality progress, and prove impossibility results for incentive-based liveness guarantees under
external payoffs. The proofs are intended to make the audit’s claims precise and verifiable.

Contents

1

8

9

Model and Definitions

1.1 Blockchain Structure . . . . . . . . .. L Lo
1.2 Participants and Stakes . . . . . . . ... L
1.3 Reward Model . . . . . . . .
1.4 Agent Model . . . . . . o

Safety Results

Liveness and Incentive Alignment
3.1 The Rational Stall Equilibrium . . . . . . . . .. ... ... ... .. ... .. ...,
3.2 Bribery and Pivotality . . . . . . . . ..

Penalty for Failure to Defend (PFD)

Catastrophic Failure Modes
5.1 The Zombie Set . . . . . . . . . e
5.2 The Liquid Exit Paradox . . . . . . . . .. L

Fork Choice Rule Dichotomy
Recovery and Circular Dependencies
Miner Incentive Distortions

Free-Rider and Equivocation Results

10 Summary of Results

10

11

12

13



1 Model and Definitions

We begin by formalizing the components of a hybrid PoW /PoS finality system with the structural
properties of Crosslink Zebra.
1.1 Blockchain Structure

Definition 1.1 (Blockchain). A blockchain C is a sequence of blocks (B, By, . .., By) where By is
the genesis block and each B; for i > 0 contains a reference to B;_;. We write h(C) for the height
of the chain tip.

Definition 1.2 (Finality Function). A finality function LF : C — N maps a chain to the height of
its last finalized block. We require:

(i) LF(C) < h(C) (finality does not exceed tip)
(ii) If C" O C, then LF(C’) > LF(C) (finality is monotonic in extensions)
Definition 1.3 (Finality Gap). The finality gap at chain C is G(C) = h(C) — LF(C).

1.2 Participants and Stakes

Definition 1.4 (Validator Set). A validator set V = {v1,...,v,} is a finite set of validators. Each
validator v; has stake s; > 0. Total stake is S = > 1" | s;.

Definition 1.5 (Frozen Validator Set). In a frozen-set design, the active validator set V* for finality
decisions is determined by the state at the last finalized block. During a finality stall (period where
LF does not advance), V* cannot be modified by delegation, entry, or exit actions on the unfinalized
portion of the chain.

Definition 1.6 (Finality Certificate). A finality certificate o for height h is a collection of signatures
from validators in V* attesting to a block at height h. A certificate is valid if the signing validators
collectively hold stake exceeding a threshold 7 - .S where 7 > 2/3.

1.3 Reward Model

Definition 1.7 (Block Reward Pool). Let r > 0 be the per-block reward. The pending reward pool
after A blocks without finality advancement is:

R(A) = f(A,r)
where f specifies the accumulation rule. We distinguish:
e Accumulating: f(A,r) = A -r (rewards grow linearly)
« Capped: f(A,r) =min(A -7, R) for some cap R

o Decaying: f(A,r)=r1r- 11:6? for decay rate ¢ € (0,1)

Definition 1.8 (Commission and Staker Rewards). Let o € (0, 1) be the commission rate. When
finality advances, the reward pool R is distributed as:

o Commission: aR distributed to signing finalizers proportional to stake

o Staker rewards: (1 — a)R distributed to all stakers proportional to stake



1.4 Agent Model

Definition 1.9 (Rational Agent). An agent i is rational if it chooses actions to maximize expected
utility U;. We decompose utility as:

tocol
U, = UZPTO oco + Ulgexternal

where U? rotocel Jerives from protocol rewards and US™al from positions outside the protocol (e.g.,
short exposure, competing chains).

Definition 1.10 (Discount Factor). Agents discount future payoffs by factor 5 € (0,1) per block
period. A payoff = received after A blocks has present value f2z.

2 Safety Results

Safety results for BFT-style finality gadgets are well-established. We state them here for completeness
and to clarify assumptions.

Assumption 2.1 (Byzantine Threshold). The fraction of stake controlled by Byzantine (arbitrarily
malicious) validators is less than 1 — 7, where 7 > 2/3 is the finality threshold.

Assumption 2.2 (PoW Consistency). The underlying PoW chain satisfies common-prefix con-
sistency: with high probability, any two honest nodes’ chains share a common prefix up to some
bounded depth k.

Theorem 2.3 (Accountable Safety). Under Assumptions 2.1 and 2.2, if two conflicting blocks
B and B’ at the same height are both finalized, then at least (2 — 1) - S stake must have signed
conflicting certificates.

Proof. Let o be a valid certificate for B and ¢’ be a valid certificate for B’. By definition of validity,
the signers of o hold stake > 7.5 and the signers of ¢’ hold stake > 7.5.
The intersection of these signer sets must hold stake at least:

TS+7185—-S=2r-1)S

by inclusion-exclusion. Every validator in the intersection signed both certificates, which constitutes
equivocation on conflicting blocks. O

Corollary 2.4 (Safety Under Honest Supermajority). If Byzantine stake is less than (1 — 7)S and
T > 2/3, then conflicting finalization requires honest validators to equivocate, which they will not do
by assumption.

Remark 2.5. Theorem 2.3 is the standard BFT safety result (cf. Casper FFG). The key observation
for Crosslink Zebra is that safety holds regardless of economic incentives once honest validators
follow the signing protocol. Safety is structural, not incentive-dependent.

3 Liveness and Incentive Alignment

Unlike safety, liveness depends critically on incentive alignment. We now formalize conditions under
which rational validators choose to advance finality.



3.1 The Rational Stall Equilibrium

Definition 3.1 (Blocking Coalition). A coalition B C V* is blocking if >, cpsy > (1 —7)S. A
blocking coalition can prevent finality by withholding signatures.

Proposition 3.2 (Rational Stall Under Accumulating Rewards). Suppose rewards accumulate
linearly: R(A) = A-r. Let B be a blocking coalition that has delayed finality for A blocks. Delaying
one additional block increases the coalition’s expected present-value payoff if and only if:

A

B>A+1'

In particular, at A =0 any B > 0 makes the first delay profitable, and the condition becomes harder
to satisfy as A grows.

Proof. Consider a blocking coalition with collective stake sz that has delayed finality for A blocks.
If it finalizes now, it receives (in commission):

a-R(A)-%:a-A-r-%”

If it delays one more block and then finalizes, it receives (discounted):

ﬁ-a-R(AH).%’B:ﬁ-a-(AH)-r-%B

The common factor « - 7 - sg/S cancels. Delaying is preferred if and only if:

A
A+1

B-(A+1)>A = (>

Note that the coalition’s stake share sp/S is irrelevant to the marginal delay decision—it scales
both payoffs equally.

As A — o0, the threshold approaches § > 1, which is impossible, so delay cannot continue
indefinitely. However, for any finite horizon or with additional hazard (governance intervention),
the coalition faces a stopping problem.

More precisely, if the coalition believes finality will occur (via governance or coalition breakdown)
with probability p per block regardless of their action, then continuing to delay is optimal if:

A
B(1—p)- Zl>1

For small p and large (3, this holds for all A below some threshold that grows with 5 and shrinks
with p. O

Theorem 3.3 (Anti-Jackpot Necessity). If R(A) is unbounded and increasing in A, then for
any discount factor B < 1, there exists a threshold A such that rational delay up to A blocks is a
subgame-perfect equilibrium for a blocking coalition.

Proof. We solve the coalition’s optimal stopping problem by backward induction. Let V(A) be the
continuation value at delay A. The coalition chooses between:

o Finalize now: receive aR(A) - %B

o Delay: receive §- V(A +1)



At the optimal stopping point A:

Simplifying:

For accumulating rewards R(A) = A -r:

o <_ B
A=p(A+1 A=—
BA+1) = A=
For 8 = 0.9, this gives A =9 blocks of rational delay. For 8 = 0.99, this gives A = 99 blocks.
The coalition will delay until A and then finalize, extracting the accumulated reward pool. [

Corollary 3.4 (Anti-Jackpot Sufficiency Under Non-Increasing Rewards). If R(A) is non-increasing
in A for A >0 (i.e., rewards are capped at a fized level or the pending pool shrinks), then immediate
finalization strictly dominates delay for any discount factor § < 1.

Proof. If R(A +1) < R(A), then:
B-R(A+1)<p-R(A) < R(A)
so finalizing now yields strictly higher present value than delaying. O

Proposition 3.5 (Bounded Delay Under Decaying Per-Block Rewards). Suppose per-block rewards
decay geometrically so the pending pool is

1—62

R(A)=r 5

de(0,1).

Note that R(A) is strictly increasing in A (each new block adds 6™ > 0), so the preceding corollary
does not apply. However, the marginal growth rate R(A+1)/R(A) decreases toward 1. The optimal
delay for a blocking coalition with discount factor B < 1 is bounded by:

log(1 — f3)

A decay < log S

For B =0.95 and § = 0.9, this gives Aﬂemy < 28 blocks. By contrast, under accumulating rewards

with the same f, the optimal delay is A = 3/(1 — B) = 19 blocks, but the accumulated pool at that
point is proportional to A, whereas under decay it is bounded by /(1 — §).

Proof. Under the decaying model, the coalition delays one more block when 8- R(A + 1) > R(A),

ie.:
1— 5A+1 1— 5A

b a5 > 1%

Simplifying:
Bl -6y >1-62

5_//35A+1>1_5A
2(1-p8)>1-8



1-p
5A
~1-55
Taking logarithms (both sides positive since 5 < 1 and 3§ < 1):

log( 1=55)

A
< log &

Since 11_;/5?5 < 1, and log § < 0, the right-hand side is positive.

For an upper bound, note 1 — 3§ > 1 — 3 is not useful directly, but % > (1 — () since
1— 6 < 1. Thus:
log(1 — f3)

log 6

Adecauy <

The key difference from accumulating rewards is not only that delay is bounded, but that the pool
size at the optimal stopping point is bounded by /(1 — ¢§) regardless of 3, whereas the accumulating
pool grows as 3/(1 — ) - r, which is unbounded as § — 1. O

Remark 3.6. This result clarifies the relationship between the audit’s recommendation R4 and the
formal model. A purely decaying per-block reward does not make R(A) non-increasing, so it does
not achieve the “immediate finalization dominates” property. Instead, it achieves a weaker but
practically important property: bounded delay with a bounded pool. A hard cap R on the pool
achieves the stronger property once the cap binds (since R becomes constant and then SR < R). In
practice, combining cap and decay—e.g., R(A) = min(r - %, R)—achieves both bounded delay
and eventual strict dominance of immediate finalization.

3.2 Bribery and Pivotality

Proposition 3.7 (Marginal Bribery Cost). Let honest participation be p > 7 (i.e., honest validators
holding fraction p of stake will sign). The cost to stall finality via bribery is proportional to (p — )9,
not to S.

Proof. Finality requires signatures from stake > 7.5. If honest stake p - S will sign, an attacker must
bribe enough honest validators to reduce effective participation below 7.5.
The attacker needs to bribe validators holding stake:

p-S—17-S=({p—-71)8

The cost is thus ¢ (p — 7)S where ¢ is the per-unit bribery cost, which may be as low as the
validator’s expected reward for signing. O

Remark 3.8. This formalizes the audit’s observation that the cost to stall depends on the margin to
threshold, not total stake. A system with p = 0.7 and 7 = 2/3 has margin (0.7 — 0.667)S ~ 0.0335,
requiring bribing only ~ 3.3% of stake.

4 Penalty for Failure to Defend (PFD)

Definition 4.1 (Penalty for Failure to Defend). The PFD for a deviation d from compliant behavior
c is:

PFD(d, C) _ Uprotocol(c) _ Uprotocol(d)

the difference in protocol-derived utility between compliant and deviant behavior.



Theorem 4.2 (PFD Bound in Non-Slashing Mechanisms). In any mechanism without slashing
(i.e., where principal stake cannot be reduced as punishment), the mazimum PFD is bounded by:

PFDpox < R+ L

where R is the maximum withheld reward and L is the maximum liquidity/time-value cost from
delayed exit.

Proof. Without slashing, the protocol can only impose costs through:
1. Withholding rewards that would have been earned under compliant behavior
2. Delaying the return of staked principal (liquidity cost)
3. Operational costs (which are bounded and typically small)

The first component is bounded by the total rewards available over the deviation period, R.
The second component is bounded by the time-value cost of delayed principal return. If principal
P is delayed by T blocks with discount factor 3, the cost is P(1 — 87) < P(1 — 3) - T for small T
Since principal is not at risk (no slashing), the maximum penalty is the sum of these components.
O

Corollary 4.3 (External Incentive Impossibility). If an agent’s marginal external payoff from
deviation satisfies U°emel(d) — Uertemal(c) > PFDy.y, then no non-slashing mechanism can make
compliant behavior a dominant strategy for that agent.

Proof. The agent’s total utility from deviation is:
U(d) _ Uprotocol(d) + Uexternal(d)

For compliant behavior:
U(C) — Uprotocol(c) + Uexternal(c)

Deviation is preferred if:
Uexternal(d) _ Uexternal(c) > Uprotocol(c) _ Uprotocol(d) — PFD(d, C)

Since PFD(d, ¢) < PFDyax by Theorem 4.2, the condition Uexternal(q) — rexternal(c) > PFD,,x
is sufficient.

A common special case is the “short seller” scenario where compliance has no external payoff
(Uexternal(c) — (). In that case, the condition simplifies to Ut*™al(d) > PFD . O

Remark 4.4. This formalizes the audit’s claim that non-slashing mechanisms have fundamental
limits. An agent with sufficient short exposure can profit from disruption regardless of protocol-level
incentives.

5 Catastrophic Failure Modes

5.1 The Zombie Set

Definition 5.1 (Effective Participation). Let A C V* be the set of validators that are online and
willing to sign. The effective participation is:

Z’UEA Sv
S

m =



Definition 5.2 (Attrition Rate). The attrition rate A > 0 is the fraction of active stake that
becomes inactive per time period (due to key loss, operator shutdown, etc.).

Proposition 5.3 (Zombie Set Threshold). Let initial effective participation be mg > 7. Under
constant attrition rate A, effective participation after t periods is:

m(t) =mo- (1 —A)?
The finality gadget becomes permanently inoperable when mw(t) < T, which occurs at:

. log(r/m)
log(1 — \)

Proof. Under constant attrition, if w(t) is effective participation at time ¢:
m(t+1)=mn(t)-(1-X)

Solving the recurrence: m(t) = mo(1 — \)’.
Setting w(t*) = 7:

mo(1l — )\)t* T
o _ Joa(r/m)
log(1—\)

For mp = 0.8, 7 = 2/3, A = 0.02 (2% monthly attrition):

., log(0.667/0.8)  —0.182

~ ~9 th
log(0.98) T0.0202 7 TOmH®

O

Theorem 5.4 (Zombie Set Irreversibility). In a frozen-set design, once 7w(t) < 7, the finality gadget
cannot recover without external intervention (governance reset), even if all remaining validators are
honest and online.

Proof. By definition of frozen-set design, V* is fixed at the last finalized block. New validators
cannot join and departed validators cannot be replaced until finality advances.

But finality requires a certificate signed by stake > 75. If effective participation w < 7, no valid
certificate can be formed, so finality cannot advance, so V* remains frozen.

This is a fixed point: the system is stuck in a state where the only exit requires finality, but
finality requires resources that the stuck state cannot provide. O

Remark 5.5. The Zombie Set is an entropic failure mode—it requires no adversary, only the natural
decay of participation over time. The frozen-set design converts a temporary stall into a permanent
failure if the stall persists long enough.

5.2 The Liquid Exit Paradox

Assumption 5.6 (Exit Feasibility During Stalls). Staking exit actions (unbond, claim) can complete
on the PoW chain even when finality is stalled.

Definition 5.7 (Economic Exposure). A validator v’s economic exposure E, is the value at risk
from protocol penalties or opportunity costs. Under no slashing, F, equals the present value of
foregone rewards plus liquidity costs.



Proposition 5.8 (Security Budget Decay). Under Assumption 5.6, if validators can exit during
a stall, the effective security budget backing the frozen set decays over time even though nominal
voting weights remain constant.

Proof. Let V* be the frozen validator set with voting weights (w1, ..., w,) determined at the last
finalized block.

Under Assumption 5.6, validators can complete exit actions (unbond, claim principal) on the
unfinalized PoW chain. Once a validator v has exited:

o Their voting weight w, in V* remains unchanged (frozen)
o Their economic exposure E, — 0 (no stake at risk, no rewards to lose)

The cost to bribe validator v to sign an arbitrary certificate is now bounded by:
Bribe cost < E, — 0
An attacker seeking to corrupt the frozen set faces cost:

C(corrupt) = Z(bribe cost for v)
veB

where B is a set with Y cgw, > 7.
As validators exit, C'(corrupt) — 0 while the nominal threshold 7 - S remains constant. This is
“phantom security”—the appearance of stake-weighted security without the economic substance. [

Remark 5.9. Whether Assumption 5.6 holds depends on implementation details: unbonding periods,
whether claims require finalized state, and censorship resistance of exit transactions during stalls.
The audit recommends explicitly specifying this interaction.

Remark 5.10 (Rational vs. Intrinsically Honest Validators). The security budget decay in Proposi-
tion 5.8 applies to validators who are honest because it is incentive-compatible, not to validators who
follow the protocol out of intrinsic commitment regardless of payoffs. Intrinsically honest validators
remain secure after exit (they will not sign arbitrary certificates even at zero cost), but they may
not constitute a supermajority on their own. The effective security of the frozen set after exits
depends on the fraction of intrinsically honest stake, which is unobservable and should not be relied
upon for security guarantees.

6 Fork Choice Rule Dichotomy

Definition 6.1 (Fork Choice Rule). A fork choice rule F maps a node’s view of the network
(received blocks and certificates) to a canonical chain.

Definition 6.2 (Work-Preferring Rule). F is work-preferring if it selects the chain with maximum
cumulative work, regardless of finality status.

Definition 6.3 (Finality-Preferring Rule). F is finality-preferring if it selects only among chains
that extend the highest known finalized block.

Theorem 6.4 (Fork Choice Dichotomy). In a hybrid PoW/PoS system with a finality gadget that
can stall:



(i) Under a work-preferring rule, a stalled finality gadget can be bypassed, degrading the system to
pure PoW.

(i) Under a finality-preferring rule, a stalled finality gadget halts the canonical chain.

There is no fork choice rule that both (a) continues chain progress during finality stalls and (b)
preserves the security gquarantees of finality.

Proof. (i) Suppose F is work-preferring. Let By be the last finalized block and suppose finality stalls
at By. Miners can create a fork from B; that ignores the stalled finality gadget entirely. Under
work-preferring F, if this fork accumulates more work than any finality-consistent chain, it becomes
canonical.

Finality certificates for the bypassed chain are never incorporated. The system effectively
operates as pure PoW, losing the safety guarantees that finality was meant to provide.

(ii) Suppose F is finality-preferring. By definition, the canonical chain must extend By. If
finality stalls at B; and no certificate advances finality, then:

e The PoW chain may extend beyond By, producing blocks Bfi1, Bfio,. ..
e But these blocks are not finalized
o JF accepts them as part of the canonical chain only if they extend By

If the finality gadget cannot produce certificates (e.g., due to Zombie Set), no block beyond By
can be finalized. Depending on implementation:

o If F requires eventual finalization, the system halts

o If F allows unbounded unfinalized extensions, the chain grows but with only PoW-level
security

(iii) Suppose a rule F* achieves both (a) and (b). Then during a stall:
« By (a), the chain makes progress, so some blocks extend By
o By (b), these blocks have finality-level security

But finality-level security requires valid certificates, which by assumption cannot be produced
during the stall. Contradiction. 0

Corollary 6.5 (Governance Reset Necessity). A finality-preferring system requires an out-of-band
governance mechanism to recover from Zombie Set failures.

7 Recovery and Circular Dependencies

Proposition 7.1 (Catch-Up Finalization Requirement). After a finality stall, safe resumption
requires finalizing the intervening unfinalized blocks in sequence (catch-up finalization). Direct
resumption at the PoW tip is unsafe.

Proof. Let By be the last finalized block and B; be the current PoW tip with h(B;) > h(By).
The validator set V* is determined by the state at By. The state at B; may include:

o New staking deposits (validators not in V*)

10



o Completed exits (validators in V* with zero economic exposure)
o Redelegation (stake moved between validators)

Suppose we attempt to finalize B; directly using V*. The certificate would be valid under the
rules at By, but:

1. The state at B; depends on transactions in By q,...,B; 1

2. Some of these transactions may conflict with certificates that could have been issued for
intermediate blocks

3. Specifically, if a validator exited at block By, their signature on a certificate for B; is
economically meaningless

More critically, suppose there are two competing chains from By:
e Chain A: Bf—>B}4+1—>---—>B£4
e Chain B: Bf—>B}1?_H_>..._>BtB

If we finalize BtA directly, what happens to transactions in Chain B that conflict with Chain A?
Without finalizing intermediate blocks, there is no mechanism to establish that Chain A is canonical
for the intervening history.

Therefore, safe resumption requires sequential finalization: first finalize By, then By, etc.,
until reaching the tip. Each certificate establishes the canonical history up to that point. ]

Proposition 7.2 (Circular Dependency in Tip Resumption). Attempting to resume finality directly
at the PoW tip creates a circular dependency: the validator set at the tip depends on finality decisions
that have not been made.

Proof. Let V(B) denote the validator set implied by the state at block B.
For any block By with k > f:
V(By) = g(State(By))

where g extracts the validator set from the staking state.
State(By) depends on:

o State(Bg_1)

e Transactions in B

o Whether By, is on the canonical chain (i.e., finality decisions)
If we attempt to use V(B;) to finalize By:

e V(B:) depends on State(B)

 State(B;) depends on the canonical chain from By to By

e The canonical chain depends on finality certificates

e Finality certificates depend on V*

If V* = V(By), this is circular: the validator set depends on finality, which depends on the
validator set.

The frozen-set design breaks this cycle by fixing V* = V(By), which is well-defined because By
is already finalized. O

11



8 Miner Incentive Distortions

Proposition 8.1 (Empty Block Incentive). If the miner bounty for including a finality certificate is
O0R and transaction fees are F, miners prefer empty blocks when:

R > F + (marginal orphan risk cost from transactions)

Proof. Let porphan(B) be the probability that block B is orphaned. This probability increases with
block size due to propagation delay.

Let Bpai be a block with transactions (size sg, fees F') and Bempty be a block with only the
certificate (size Scert < Sfull)-

Expected payoff from Bgy:

(1 = Porphan(Stull)) - (OR + F + coinbase)
Expected payoft from Bempty:
(1 — Porphan(Scert)) - (0R + coinbase)

The miner prefers Bempty when:

(1 - porphan(scert)) -0R > (1 - porphan(sfull)) : (5R + F)

For small orphan probabilities, this simplifies to:

R - (porphan(sfull) - porphan(scert)) > F- (1 - porphan(sfull))
When §R is large relative to F', this inequality holds, incentivizing empty blocks. O

Proposition 8.2 (Certificate Malleability). If the miner bounty is keyed to the certificate hash,
miners can malleate certificates to claim multiple bounties or orphan competitors.

Proof. BLS multi-signatures allow subset aggregation: given signatures {o;};cs for a message m,
any subset S’ C S with |S’| > threshold yields a valid aggregate signature og.

Different subsets produce different aggregate signatures, hence different certificate hashes.

If miner M includes certificate og and miner Ms includes og/ (with S’ # S, both valid), and
the bounty is per-hash:

e Both miners may claim bounties for “different” certificates

e A miner can create a competing block with a malleated certificate to orphan a competitor’s
block

Keying the bounty to finalized height (not certificate hash) eliminates this: only one bounty is
paid per height advancement, regardless of which valid certificate achieves it. O

9 Free-Rider and Equivocation Results

Proposition 9.1 (Free-Rider Equilibrium Without Signer-Conditioning). If commission is paid
to all active-set validators regardless of signing, not signing is strictly dominant for any individual
validator (assuming signing cost € > 0).

12



Proof. Let ¢, be the commission paid to validator v. Under non-conditioned commission:
ey =aR- %v (independent of signing)
The cost of signing is € > 0 (computation, bandwidth, operational attention).
A validator’s payoff is:
o Ifsign: ¢, —€
o If not sign: ¢,

Not signing strictly dominates for any individual validator.
If all validators reason this way, no one signs, and finality stalls. But the individual incentive
remains: conditional on others signing (so finality advances), not signing is still preferred. O

Proposition 9.2 (Equivocation as Costless DoS). Without slashing, equivocating (signing conflicting
certificates for the same height) imposes zero financial cost on the equivocator.

Proof. Let v sign certificates o for block B and ¢’ for conflicting block B’ at the same height.
Under no-slashing:

e Principal stake is not reduced
» Rewards depend on which certificate (if any) is included on-chain
o At most one of 0,0’ contributes to an on-chain certificate

The equivocator receives the same reward as if they had signed only the winning certificate. The

cost is zero.
However, honest nodes must:

e Receive and verify both ¢ and o’
o Determine which (if either) to propagate
o Potentially process many equivocating signatures from the same validator

This imposes costs on the network (bandwidth, computation) without cost to the equivocator—a
classic externality enabling DoS. O

10 Summary of Results

1. Safety is structural (Theorem 2.3): Once finalized, blocks cannot be reverted without
detectable equivocation by > (27 — 1) stake.

2. Liveness requires anti-jackpot (Theorem 3.3, Proposition 3.5): Under accumulating
rewards, rational delay is an equilibrium. Capping rewards eliminates delay once the cap
binds. Decaying per-block rewards bound delay and the pool size, but do not make immediate
finalization strictly dominant; combining cap and decay achieves both properties.

3. PFD is bounded (Theorem 4.2): Non-slashing mechanisms cannot impose penalties exceeding
withheld rewards plus liquidity costs. External incentives can exceed this bound.

13



4. Zombie Set is irreversible (Theorem 5.4): In frozen-set designs, participation attrition
below threshold permanently disables finality without governance intervention.

5. Liquid Exit degrades security (Proposition 5.8): If exits complete during stalls, the
economic substance backing frozen voting weights evaporates.

6. Fork choice forces a choice (Theorem 6.4): No rule achieves both continued progress and
finality guarantees during stalls.

7. Catch-up is required (Proposition 7.1): Direct resumption at tip creates circular dependen-
cies; sequential finalization is necessary.

8. Miner bounties distort (Propositions 8.1, 8.2): Large bounties incentivize empty blocks;
hash-keyed bounties enable malleability attacks.

9. Free-riding and equivocation (Propositions 9.1, 9.2): Without signer-conditioning, free-
riding strictly dominates. Without slashing, equivocation is costless DoS.
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